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It has been shown by calculation that the eclipsed forms of ferrocene and 
ruthenocene are more stable than their staggered forms. The main contribu- 
tion to the energy difference is the induction energy of the metal in the poten- 
tial field of the rings. Direct ring+g electrostatic energy also favours the 
eclipsed forms by a small amount. The calculated barrier in ferrocene is in good 
agreement with an experimental estimate from electron diffraction. 

1. Introduction 

Whilst the barriers to internal rotation in biscyclopentadienyl complexes 
are certainly small there has been some disagreement in the past not only over 
their magnitude but over whether the eclipsed(Dsh) or staggered (Dsd) struc- 
ture is the more stable. The evidence on ferrocene, in &u%icular, has been con- 
flicting. 

Early X-ray studies of ferrocene [l-3] suggested a staggered configuration 
although subsequent work indicated that there might be large rotational oscilla- 
tions of the rings about their equilibrium position’[4]. Rotational disorder was 
confirmed by neutron diffraction studies [5,6] and the results interpreted by a 
1 : 2-population of staggered and eclipsed molecules. In contrast, gas-phase 
electron diffraction [7,8] gave an eclipsed structure with a barrier to internal 
rotation of 3.8 +- 1.3 kJ moi-’ [S] . 

There are in fact two crystal structures of ferrocene, a room temperature 
(RT) and a low temperature (LT) form, and it is the RT form that possesses 
disorder. The temperature dependence of the NMR signals from the LT form 
leads to a barrier in the range 7.5-9.6 kJ mol-’ [S-11] but the barrier appears 
to be smaller in the RT form. A new X-ray analysis of the LT form [12] suggests 
that the molecule has a nearly eclipsed form (a rotation from the exact eclipsed 
structure by about.10” being indicated) and that the disordered RT form could 
be described by a statistical distribution of the LT eclipsed structures_ A recent 
neutron diffraction study supports this view 1131. 
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Although the conformation in the crystal is likely to he strongly influenced 
by crystal forces 1143, particularly in view of the fact that heats of sublimation 
are larger than the barrier to internal rotation, there appears no doubt at this 
time that the preferred structure of an isolated ferrocene molecule is the eclipsed 
form. 

There have been fewer studies on other biscyclopentadienyl complexes. The 
X-ray analysis of ruthenocene 1141 showed that it had an eclipsed configuration. 
A number of other metallocenes appear to have a similar crystal disorder to the 
RT form of ferrocene (see the discussion in ref. 12). Electron diffraction 
studies of nickelocene and cobaltocene were inconclusive regarding the preferred 
orientation of the rings but it appears that the barriers to internal rotation are 
less than in ferrocene [ 15,16]_ 

Small energy differences can be extremely difficult to explain and the explana- 
tion is frequently model dependent. The barrier to internal rotation in ethane 
and the difference in energy between the FCC and HCP close packed structures 
of the inert gas solids provide examples of this. We offer in this paper an explana- 
tion of the barrier to rotation in ferrocene in the spirit that it is adequate but 
probably not unique. Our main emphasis is to show an analogy to the situation 
in the inert gas crystals in that we believe both can be explained on the basis of 
a non pair-additive induction energy. 

- Ic a perturbation theory of long range forces, where the overlap of orbit& 
on the interacting fragments can be neglected, the induction energy is the only 
non pair-additive contribution to the energy to second-order of perturbation. 
For suitable reviews see references 17 and iS. induction energy is the energy 
gained by the polarization of an atom or molecule in the combined electro- 
static field of all its neighbor&s. 

If overlap cannot be neglected the induction energy can still be defined by 
the same expressions as in the long range theory but additional non pair-addi- 
tive terms arise from the exchange of electrons between the fragments [see 
refs. 17 and 191. At Van der Waals contacts it is sometimes difficult to decide 
if the exchange or the overlap independent non-pair energies are the more im- 
portant. This has been the situation for the inert gas crystals [20]. 

In a recent paper we have shown that the FCC-HCP energy difference of 
inert gas crystals can be explained by the induction energy of an atom in the 
field of its twelve nearest neighbours [21]. In this case the field is non zero 
because of the small amount of overlap between the orbitals of nearest neigh- 
bour atoms. We now propose that the barrier to internal rotation in ferrocene 
can be explained by the polarization of the metal in the field of the cyclopenta- 
dienyl rings. Because the rings undoubtedly carry a net negative charge the 
induction field is not in this case dependent on overlap for its existence and the 
induction energy is, in consequence, larger. The parallel between the inert gas 
and ferrocene problems lies mainly in the fact that the differences between the 
electrostatic fields for the two structures involved only appear in high orders 
of spherical harmonics when viewed from the central atom. 

Before considering the details of the induction energy we deal briefly with 
two aspects of direct ring-to-ring interaction in order to show that they are 
inadequate to explain the barrier. 

We first consider the direct overlap of the cyclopentadienyl R orbitals. These 
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transform in DSh symmetry as a,“, err’ and ez” in order of increasing energy. 
In the radical there is an unpaired electron in the el” orbital. Direct overlap of 
the orbit& of two such radicals would lead to electron pairing and a stabiliza- 
tion which is roughly proportional to the overlap integral. 

Using Clementi’s 4-term expansion of the carbon 2p atomic orbital [22] we 
calculate the overlap integral between el” orbitals in the eclipsed configuration 
to be 0.08424, which is perhaps larger than one would expect. However, the 
difference in overlap integrals between the eclipsed and staggered forms is 
smaller than this by a factor 5 X 10S3. Thus to attribute a barrier height of 
4 kJ mol-’ to this difference would imply an absolute energy from ring-to- 
ring-overlap of the order of lo3 kJ mol-’ which is unreasonable. At the larger 
ring-to-ring distance in ruthenocene of 3.7 A the difference in overlap integrals 
is even smaller, 3 X 104. We conclude that direct ring-to-ring overlap may 
make a significant contribution to the total binding energy but not to the 
barrier. 

The rings, being negatively charged, will have a direct ring-to-ring electro- 
static repulsion. If we assume that the rings carry unit negative charge and this 
is distributed l/5 on each carbon atom then in a point charge approximation 
the total electrostatic energy of the-eclipsed from of ferrocene is 380 kJ mol-’ 
but the difference in energy between the staggered and eclipsed forms is smaller 
by a factor 10e5. 

A more realistic model of the electrostatic energy must take into account 
the fact that the excess ‘IT electron density connat be exactly represented by 
point charges on the carbon atoms and that the (T electrons will produce their 
own non-zero potential. We have calculated a complete electrostatic energy 
assuming a net 7r electron charge on each ring of 1.125 1231 and a o electron 
distribution equivalent to three sp* hybrid densities per carbon atom (basis as 
ref. 22). This calculation predicts that the eclipsed configuration is now more 
stable than the staggered by 0.53 kJmol_’ h the case of ferrocene and 0.09 
kJmol-’ in the case of ruthenocene. The reason for the change in order from 
the point charge calculation is that penetration of the ;i~ orbitals is more impor- 
tant than the net ‘TT charge when this charge is small and penetration favours 
the eclipsed form. 

The dipole-dipole contribution to the dispersion energy between the two 
rings is invariant to rotation about the C5 axis. This follows because the (x,y) 
dipole operators transform as e’ in the D,, groups and hence the in-plane dipole 
polarizability of the rings is axially symmetric. The first multipole polarizabil- 
ity which is not axially symmetric would be of order Z, = 5 (Z, = 1 for dipole 
etc.) and the first contribution to the multipole-multipole dispersion which is 
not axially symmetric is the 5-l term which would give an energy varying as 
R-14. Instinct suggests this can be neglected. 

2. The induction energy 

We will consider only the induction energy arising from the polarization of 
the central metal ion in the field of the cyclopentadienyl rings. The polarization 
of a ring in the field of the metal and the other ring will give an axially sym- 
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metric energy to high orders of the angular variable. If we adopt a point charge 
model of the net ring charge as already discussed for the electrostatic energy, 
then the induction energies will be proportional to the square of the net charge 
on the ring. 

The induction energy is given in second order of perturbation by the expres- 
sion_ 

where Go is the ground state and & an excited state wavefunction of the metal 
and V is the electrostatic potential arising from both rings. We follow the proced- 
ure used in reference 21. for the inert gas crystals and calculate directly the 
difference between the induction energies for the eclipsed (e) and staggered (s) 
forms as follows: 

. 

(2) 

Let us now suppose that the staggered form is generated from the eclipsed 
form by rotating the top ring about the z axis by an angle @ = 27r/lO. Thus 
V, - V, has a non-zero contribution only from the field of the top ring and it 
has an angular variation which is periodic in 2x/5. It follows that the only 
states G/k which give non-zero contributions to expression 2 will be those for 
which the transition densify (3) (Ni is the number of electrons in set’ i) also has a 

&k(l) =Ni s Q’O(OG’k(WJi+ 1 (3) 

periodicity of 2~/5. Thus if a0 is spherically symmetric & must belong to the 
set of atomic states IL&f> with M = 25 and L > 5. 

The contribution to V, + V, from the top ring is periodic in 27rjlO and hence 
it will not contribute to the second integral in expression 2 for states & already 
selected by the above argument. Thus’only the potential of the bottom ring will 
give a non-zero contribution to this second integral. 

Transition densities with odd L and M = lt5 are symmetric to reflection 
in the x,y plane and hence for these both integrals in expression 2 have the 
same sign. Thus states 1J/k with odd _I, stabilize the eclipsed form relative to the 
staggered; those with even L stabilize the staggered form. L = 5 is the leading 
term and hence we except the induction energy to favour the eclipsed form. 

It is possible to use the symmetry of the problem and relate expression 2 
to the interaction between the transition density and the field of only one of 
the carbon atoms in the top layer (which we call atom 1). Expression 2 reduces 
to 

(Ee - Es)ind = (--l)L1oo~~~k-‘[ j-&k(l)V,dU# (4) 

The factor 100 arises because there are ten equivalent contributions to each 
integral in expression 2, one from each carbon atom. 

Basis states for the calculation have been constructed by exciting electrons 
from the five highest occupied molecular orbitals of the complex (all doubly 
occupied), which calculations 1231 show to be composed mainly of metal d 
orbit&, to a set of Slater-type orbitals on the metal. 
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The calculated d orbitid populations are 1.69,0.7 and 1.62 for d,z, d,, (= 

dyz) axi d,, (= d,+ 2) respectively [23]. We will assume that all the d orbital 
population arises from the five highest occupied molecular orbitals and if this 
is so we deduce that the d orbital coefficients in these molecular orbit&s are 
(ignoring overlap) (1.69/2)“*, (0.70/2)1’2 and (1.62/2)“* respectively. Excita- 
tion of one electron from any one of these (4,) to a vacant orbital (@,) will 
give a singlet state and the transition density will be d/2&,,@, _ Inserting the appro- 
priate orbital coefficient gives a transition density localized on the metal with 
weighting factors 1.691’2, 0.70*‘2 and 1.621’2 for excitation from dzz, d,,(d,,) 

wd dx,(dx+ 2) respectively. 
This localized transition density will in general have several spherical harmonic 

components but we are only interested in those transforming as YLk5_ For 
example, exciting an electron from d,z(Y,,) to an orbital transforming as Ys5 
will give a transition density in which the relevant terms are 

(5) 

where R mn(r) is the product of the normalized radial wavefunctions of the two 
metal orbitals involved. This function has to be inserted as p&l) in the integral 
of expression 4. Table I. gives the relevant terms for the transition densities, 

_ _ 
for excrtatrons from Y2,,, Y2+1 and Y 2i2 into those orbitals which we have 
found necessary for convergence of expression 4. 

Suppose VI arises from the carbon atom located at the point (rI, &, 0). The 
integral in expression 4 can be evaluated as in reference 21 by transforming 
p,,(l) to a new basis of spherical harmonics with the z axis along (rl, 8 1, 0) and 
selecting only the M = 0 components in this new basis (VI is an axially sym- 

metric potential when viewed along this new z axis). The required components 
can be obtained from expressions given by Brink and Satchler [ 241. 

Let these M = 0 components be donoted by f,(0 1). Then, for example, the 
terms in the transition density expression 5 which transform as Ys5 and Y75 
about the molecular axis have M = 0 components about the new z axis given by 

fs(S,) = (m/16) sin58_Y,, 

(6) 

f7(0,) = (-64) sin58(13 cos2e - 1)Y’O 

Table 2 lists the values of f,(e,) for 8, = 36-S”, the angle appropriate to the 
ferrocene structure. 

From expressions 5 and 6 the transition density in expression 4 reduces to 

(7) 

where the constants AL(e) are ob+Aed by multiplying the terms in Table 1 
by the appropriate values of f,(6,) from Table 2. For example, the transition 
density (expression 5) becomes 

11 1’2 
P&(l) = C-9-0129 G ( ) Y,, c 0.0208 2 1’2Y70).Rm,(r) 

( ) 
(8) 
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TABLE 2 

THE M = 0 COMPONENTS f,@ 1-j OF THE SPHERICAL HARMONICS YL~ IN THE NEW BASIS 6 I= 

36.8°. THE ANGLE APPROPRIATE FOR FERROCENE 

fs 0.030319 
f6 0.101747 
f7 0.190217 
f8 0.285966 

f9 0.361360 
f10 0.387608 
fll 0.345709 
f12 0.235413 
f13 0.078368 
f14 -0.101402 

3. Evaluation of the interaction integrals 

Following the procedure given in reference 21, we have chosen transition 
densities p,,(l) which individually maximize the separate contributions to 
expression 4 of the form 

This was achieved by taking analytical wavefunctions for the occupied d orbit&s 
(@,) given by Clementi [22] and forming transition densities by exciting an 
electron to a Slater orbital (4,) which has the wavefunction 

G,(C) = [122t;:r+‘] 1’2P-’ exp(-$-)Yh(8, @) (19) 

where [ is a variable exponent. For convenience, we write the transition den- 
sity pokL(l) in expressions 7 and 8 in terms of the Roothaan densities 1251 
which are defined by 

(11) 

where cis the mean of the exponents of Grn and 9,. The integrals in equation 9 
then reduce to expressions such as 

(1 + 7)-‘ql - 7)“+1’2 (N f L + l)! 

[(2m)!(2n)!]“2 2= s [NLO] V,du, (124 

where m and n denote the principal quantum numbers of 4, and 4, respec- 
tively,N=m tn-1 and 

L--5” 
l- = Ll + 5, 

(13) 
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These integrals were evalu?ted by taking the potential VI as the potential 
of a carbon atom already described in section 1, i.e. an effective nuclear charge 
of +4, one electron in each CJ sp2 hybrid and an amount Q in the 2pa orbital. 
It can be shown that this gives rise to the potential 

v, z-4 
rl 

+ 7’,C3SI + (2 + Q)7’,,13sl+ 

+ ; (cos*e 1 _(2Q - 1) + sin*&.(2 - Q) - 1)TPP[3DC] (14) 

wh&e T,, and TPP are equivalent to T,, in expression 12b and indicate that the 
corresponding transition densities involve electrons in carbon 2s and 2p orbit& 
respectively. [30X] is shorthand for [320] etc. The integrals were evaluated 
in part by Roothaan’s method [ 251, the final one-electron integration being 
carried out numerically [26]. 

The energy denominator in expression 9 has been calculated assuming that 
the dependence of this energy on the exponent (c) of the upper state orbital 
#, is the same as it is for the excitation of a one-electron atom [21]. The . 
orbital energies have the form (in hartrees) 

2-2 I- 

(15) 

andifL=N-1 

(16) 

For the zero-order energy of the metal d orbit&, we have taken the d orbital 
energies of the Clementi wavefunction [22] for the atomic ground state. 

4, Results 

Figures 1 and 2 show the contributions to expression 9, for ferrocene and 
ruthenocene respectively, from the states constructed by excitation from the 
occupied d orbitals to a single optimized orbital of quantum number L. Expo- 
nent optimization was made independently for each of the three types of d 
orbital. The metal-carbon distances are 3.836 u. for ferrocene and 4.176 u. 
for ruthenocene [4,14]. 

It is seen that convergence is relatively slow particularly for excitation from 
Y2* and Y2? 1, but has been achieved by L = 13. Convergence is primarily due 
to the magnitude of the integral in expression 9 and not by the factors in 
Tables 1 and 2 or the excitation energy. However, it should be noted that the 
factors of Table 1 do become zero as L + - wheyeas those in Table 2 do not. 

Total stabilization energies are obtained by surhming all contributions 
(contributions from Yzl and Yz2 must be doubled to allow for Y2_-L and Y2_*) 
multiplied by the atomic populations i.69,0.‘70 and 1.62 for Yzo. Yz= 1 and 
YZf2 respectively. The final result is a stabilization of the eclipsed form relative 
to the staggered by 2.25 kJ mol-* in the case of ferrocene and’4.57 kJmol_’ for 
ruthenocene. The induction energy is greater for ruthenocene even though 
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Fig. 1. Con&ibutio~ to expression 9 for the inductive stabiization of ferrocene. The three curves give 
the separate contributions arising from excitation fEom dxy<Y22k &KY21) and &2<y20)+ 

its metal-carbon distance is greater than that of ferrocene and this behaviour 
parallels that found for the inert gases. 

If we combine the induction energy with that calculated in section 2 for 
the electrostatic energy we obtain a net stabilizatior_l, of the eclipsed form of 
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Fig. 2. As fig. 1 but for ruthenocene. 
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2.78 kJmol-* and 4.66 kJmol_’ for ferrocene and ruthenocene respectively. 
The electron diffraction estimate for ferrocene is 3.8 + 1.3 kcmol-’ [S] . No 
experimental value is available for ruthenocene but because only the eclipsed 
structure has been detected the barrier is almost certainly larger than that of 
ferrocene. 
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